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tural members was investigated using finite-element analysis and existing test data. Results showed how a compression strut develops in con-
crete infill under shear load in the presence of low shear spans and provided the basis for proposing a mechanics-based shear strength equation
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Introduction and Background

Concrete-filled steel tubes (CFSTs) have been used in seismic-
resistant buildings and bridges. Several studies have proved the de-
sirable seismic performance of these members under flexure (Hajjar
2000; Marson and Bruneau 2004; Han and Yang 2005; Hajjar et al.
2013). Findings from these studies have supported the develop-
ment of design equations to calculate the plastic strength of such
members under combined bending and axial load (e.g., Bruneau
and Marson 2004; Leon et al. 2007; Roeder et al. 2010; Lai et al.
2014). The flexural behavior of CFSTs with internal reinforcement
has also been studied in recent years (Brown 2013; Moon et al.
2013; Bruneau et al. 2018), and equations haven been proposed
to calculate their strength (Moon et al. 2013; Bruneau et al. 2018).
A CFST with internal reinforcement is referred to as reinforced
concrete–filled steel tubes (RCFSTs).

While the flexural behavior of CFSTs has been widely re-
searched experimentally and analytically, there is considerably less
experimental and analytical knowledge on the shear behavior of
these members. In most applications, a conservative estimate of
shear strength (i.e., neglecting the contribution of concrete) is suf-
ficient because shear is rarely a governing limit state for CFST
members. However, in some instances, better knowledge of this
shear strength is desirable. For example, bridge single shaft foun-
dations constructed as RC shafts cast in a permanent steel casing
embedded in the soil sometimes span across a liquefiable soil layer;
in this case, seismically induced lateral spreading of the soil above a
thin liquefiable layer can introduce severe shear loading over a
short length of the RCFST shaft height (i.e., the shaft crossing the

liquefiable layer is subject to double curvature bending and result-
ing high shear). In this case, the shear strength of the drilled shaft
can become a significant consideration in determining the final di-
mensions of the drilled shaft.

The majority of the tests on the shear strength of composite
CFSTs and RCFSTs have been conducted using three- or four-point
bending setups with simple end supports and under monotonic load-
ings (Qian et al. 2007; Xu et al. 2009; Xiao et al. 2012; Roeder et al.
2016). These test setups generate single curvature deflection along
the member and, depending on the distance of the supports from
each other, can produce flexure, flexure-shear, and shear dominant
failures for large to short support distances, respectively.

More representative of the loading likely to be experienced by
drilled shafts subject to the aforementioned liquefaction condition,
or even of building columns for which the shear limit state governs
the flexural one (such as in panel zones or when braces have small
eccentricities at connections), or other applications, some tests have
considered specimens subject to double curvature deflection rather
than a single curvature. Monotonic double curvature shear tests on
small-diameter CFSTs [11.9 cm (4.7 in.) diameter] were performed
byYe et al. (2016) using a three-point bending setup and fixed support
conditions at both ends. Cyclic double curvature tests were performed
byNakaharaandTsumura(2014)on16.5cm(6.5 in.)-diameterCFSTs
and Bruneau et al. (2018) on larger-diameter CFSTs and RCFSTs.

Bruneau et al. (2018) tested seven shear specimens, includ-
ing two CFSTs with 32.4- (12.75-) and 40.6 cm (16 in.) diameters,
four 32.4 cm (12.75 in.)-diameter RCFSTs with various reinforcing
configurations, and a hollow 32.4 cm (12.75 in.)-diameter steel tube.
Shear specimens were tested in a pantograph device under cyclic
loading. The pantograph test setup made it possible to test the spec-
imens by introducing a double curvature deformation. Considering
the properties of the steel tube and concrete, the ratio of shear span
length to diameter of all specimens were chosen to have shear-
dominant yielding and failure. The existing shear test data are sum-
marized in Table 1. In this table, D is the diameter of the steel tube,
a is the clear span between the supports for single curvature test
setups and half of this value for the double curvature test setups,
P is the applied axial compressive load, and P0 is the summation
of yield strength of the steel tube and crushing capacity of the con-
crete ignoring buckling.
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It is important for design purposes to understand the physical
behavior of composite RCFSTs subject to shear and to develop design
equations that adequately capture the respective contribution of the
steel and concrete of the RCFST to its total shear strength (contribu-
tion of internal reinforcement is not considered here for reasons de-
scribed later). Design equations that are more anchored in the actual
physical behavior of a structural member provide more confidence in
the design. For example, overestimating the strength of one compo-
nent could also result in an unexpected failure should that component
become dominant in providing the total shear strength of that member.

The work discussed here (1) presents an assessment of the
existing shear equations in AASHTO LRFD Bridge Design Spec-
ifications (AASHTO BDS) (AASHTO 2014) and the Washington
Department of Transportation Bridge Design Manual LRFD
(WSDOT BDM) (WSDOT 2018) using the finite-element analyses
of the tests done by Bruneau et al. (2018) and identifies the short-
comings of those equations, (2) presents results from finite-element
analyses done to understand the mechanics that govern the shear
strength of composite RCFSTs, and (3) proposes a mechanics-
based shear strength equation for composite CFST members based
on those analyses. The proposed shear strength formula is com-
pared to the existing shear test data. The study presented here was
done using the results of finite-element analyses conducted using
finite-element models validated by Bruneau et al. (2018).

Shear Strength Equations in AASHTO and DOTs

The existing shear strength equations implemented in AASHTO
BDS (AASHTO 2014) and AISC 360 (AISC 2016) and those from
the WSDOT BDM (WSDOT 2018) are presented in what follows.
The shear strength experimentally obtained by Bruneau et al. (2018)
is then compared with those calculated using the equations from
AASHTO BDS (AASHTO 2014) and WSDOT BDM (WSDOT
2018).

The AASHTO BDS (AASHTO 2014) does not directly provide
an equation to calculate the shear strength of composite RCFSTs.
However, it provides equations for the shear strength of a circular
steel tube and concrete cross sections, in Sections 6.12.1.2.3c and
5.8.3.3, respectively. These equations are as follows:

VystðAASHTOÞ ¼ 0.5FcrAs 6.12.1.2.3c-1 ð1Þ

where VystðAASHTOÞ = shear strength of circular steel tube; and
Fcr = shear buckling resistance taken as the larger of either

Fcr1 ¼ 1.60Esffiffiffiffi
Lv
D

q �
D
t

�5
4

≤ 0.58Fy 6.12.1.2.3c-2 ð2Þ

or

Fcr2 ¼ 0.78Es�
D
t

�3
2

≤ 0.58Fy 6.12.1.2.3c-3 ð3Þ

in which As = area of steel tube cross section based on design wall
thickness;Es =modulus of elasticity of the steel; Fy = yield strength
of steel tube; D = outside diameter of steel tube; Lv = distance be-
tween points of maximum and zero shear; and t = design wall thick-
ness taken to be equal to 0.93 times the nominal wall thickness for
ERW round HSS. Note that in a CFST, the concrete fill provides
support against buckling of the steel tube, and therefore Fcr is taken
as 0.58Fy for these sections. For the concrete, the shear strength can
be calculated as

VcðAASHTOÞðMPaÞ ¼ 0.01286βAc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 0
cðMPaÞ

p
5.8.3.3-3 ð4Þ

where β = taken to be equal to 2.0; f 0
c = uniaxial compressive

strength of concrete (MPa); Ac = area of concrete section (cm2).
Based on comments provided by practicing engineers and using en-
gineering judgment, the composite shear strength can be calculated
by summing the shear strengths of the steel tube and the concrete as

VnðAASHTOÞ ¼ VystðAASHTOÞ þ VcðAASHTOÞ ð5Þ

However, calculating the shear capacity of CFSTs by simply
adding the shear strengths of steel and concrete parts without con-
sidering any interaction between those parts may be overly conser-
vative in many instances (Roeder et al. 2016; Bruneau et al. 2018).
The shear strength of circular filled composite members given by
AISC 360 (AISC 2016), Chapter I, is that of the (1) yield shear
strength of the steel tube alone, (2) the available shear strength of
the reinforced concrete portion alone, or (3) the yield shear strength
of the steel tube plus the shear strength of the reinforcing steel. The
strength given by AISC 360 (AISC 2016) is more conservative com-
pared to Eq. (5). Underestimating the shear strength of the shaft
could result in inefficient material use and a significant increase in
construction costs.

Improving on these approaches, the WSDOT BDM (2018) in-
cludes an updated formula for the shear capacity of RCFSTs that is
based on research done by Roeder et al. (2016). This formula was
developed according to a mathematical fit on the tests they per-
formed and test data available at the time as well as finite-element
analysis results.

Eq. (7.10.2-15) of the WSDOT BDM (WSDOT 2018) calcu-
lates the shear strength of CFST and RCFST as two times the shear
yield strength of the steel tube plus the shear strength of the con-
crete fill calculated similarly to Eq. (4) using a β factor equal to 3.
This equation neglects the contribution of the internal reinforce-
ment and does not account for the influence of the axial load.
The WSDOT BDM (WSDOT 2018) also allows the use of another
equation proposed in Roeder et al. (2016) as an alternative to
Eq. (7.10.2-15). The proposed equation by Roeder et al. (2016)
accounts for the internal reinforcing and the axial load and calcu-
lates the nominal shear strength of CFST and RCFST as follows:

VnðWSDOTÞ ¼ 2VstðWSDOTÞ þ VsrlðWSDOTÞ þ ηVcðWSDOTÞ ð6aÞ

Table 1. Summary of existing test data on shear strength of RCFST members

Reference Test setup Loading type Diameter range
a
D

range
P
P0

range

Bruneau et al. (2018) Double curvature Cyclic pantograph 30.5 cm (12 in.) and 40.6 cm (16 in.) 0.4 0
Roeder et al. (2016) Single curvature Monotonic four point bending 50.8 cm (20 in.) 0.25–1.0 0, 0.085
Ye et al. (2016) Double curvature Monotonic three point bending 11.9 cm (4.7 in.) 0.15–0.75 0–0.73
Nakahara and Tsumura (2014) Double curvature Cyclic pantograph 16.5 cm (6.5 in.) 0.5 0–0.4
Xiao et al. (2012) Single curvature Monotonic three-point bending 16.5 cm (6.5 in.) 0.14–1.0 0–0.62
Xu et al. (2009) Single curvature Monotonic three-point bending 14 cm (5.5 in.) 0.1–0.5 0
Qian et al. (2007) Single curvature Monotonic three-point bending 19.6 cm (7.7 in.) 0.1–0.3 0–0.77
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In this equation the total composite shear strength is the sum-
mation of two times the shear yield strength resisted by the steel
tube [2VstðWSDOTÞ], the shear strength of the internal reinforcing
[VsrlðWSDOTÞ], and the concrete fill [ηVcðWSDOTÞ]. Each of these
contributions is calculated as follows:

VstðWSDOTÞ ¼ 0.6Fytð0.5AstÞ ð6bÞ

VsrlðWSDOTÞ ¼ 0.6Fyrlð0.5AsrlÞ ð6cÞ

η ¼ 5

�
1 þ 5

P
P0

�
≤ 10 ð6dÞ

VcðWSDOTÞ ¼ 0.01286Ac ðcm2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 0
cðMPaÞ

p
ð6eÞ

In the preceding equations, Fyt and Ast are the yield stress
and cross-sectional area of the steel tube, respectively, and Fyrl
and Asrl are the yield stress and total cross-sectional area of the
longitudinal reinforcement, respectively. Additionally, f 0

c and Ac
are the uniaxial compressive strength and cross-sectional area of
the concrete infill, respectively, and P and P0 are the externally
applied axial load and the crushing capacity of the RCFST cross
section ignoring buckling, respectively. The WSDOT BDM
(WSDOT 2018) Eq. (7.10.2-15) and the alternative equation pro-
posed by Roeder et al. (2016) are similar in terms of calculating the
contribution of the steel tube. However, the alternative equation ac-
counts for a higher contribution of the concrete as well as the in-
fluence of the axial load. The alternative equation was considered
as WSDOT BDM (WSDOT 2018) in the following comparisons.

As an example of how the predicted strengths from AASHTO
BDS (AASHTO 2014) and WSDOT BDM (WSDOT 2018) com-
pare to experimental results, Table 2 presents the properties of the
specimens tested by Bruneau et al. (2018), the experimentally ob-
tained maximum shear strength, and the corresponding shear
strengths calculated from AASHTO BDS (AASHTO 2014)
and WSDOT BDM (2018) equations. As presented in this table,
the AASHTO BDS (AASHTO 2014) equations give conservative
values for the shear strength of the tested CFSTs and RCFSTs. The
shear strengths calculated by the WSDOT BDM (WSDOT 2018)
equation for the filled specimens were closer to the experimentally
obtained shear strength values.

Fig. 1 shows results from the cyclic finite-element analysis of
Specimen SH4. In this figure, the shear force respectively carried
by the steel tube and the concrete of the specimen is plotted sep-
arately and is compared to the corresponding values calculated
from the AASHTO BDS (AASHTO 2014) and WSDOT BDM
(WSDOT 2018) equations in Figs. 1(a and b), respectively. Also,
the points where the first yield happened and the maximum exper-
imental shear strength was reached are identified in this figure. The
first yield was determined by the point where the first yield oc-
curred on the steel tube. The yielding happened at the middle of
the cross section where the shear stress is at its maximum. The
shear force carried by the steel tube and the concrete was calculated
by cutting a section at the midheight of the member and integrating
the shear force over the steel tube and concrete cross section, re-
spectively. The summation of these contributions is equal to the
total shear carried by the composite cross section.

The LS-Dyna (LSTC 2013) model of the shear specimen and
test setup is schematically shown in Fig. 2. To include the effects
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Fig. 1. Comparison of component shear forces with (a) AASHTO BDS (AASHTO 2014); and (b) WSDOT BDM (WSDOT 2018).

Table 2. Test specimens of Bruneau et al. (2018) properties, results, and comparison with existing shear strength equations

Specimen
OD
(cm)

a
(cm)

a
OD t (cm)

D
t

f 0
c,

(MPa)
Ec

(MPa)
fy

(MPa)
Reinforcing

(Grade 60 ksi)
Vexp
(kN)

VnðAASHTOÞ
(kN)

VnðWSDOTÞ
(kN)

Vexp

VnðAASHTOÞ

Vexp

VnðWSDOTÞ

SH2 (CFST) 40.6 16.5 0.41 0.6 68.8 20 19,009 351.6 No reinforcement 1,943.9 840.7 1,783.7 2.31 1.09
SH4 (CFST) 32.4 12.7 0.39 0.6 54.8 31 23,677 399.9 No reinforcement 1,761.5 756.2 1,588.0 2.33 1.11
SH5 (RCFST) 32.4 12.7 0.39 0.6 54.8 31 23,677 399.9 Longitudinal 6#4 (ρs =1%)

no transverse
1,765.9 756.2 1,685.9 2.34 1.05

SH6 (RCFST) 32.4 12.7 0.39 0.6 54.8 31 23,677 399.9 Longitudinal 6#6 (ρs ¼ 2.2%)
no transverse

1,841.6 756.2 1,801.5 2.44 1.02

SH7 (RCFST) 32.4 12.7 0.39 0.6 54.8 31 23,677 399.9 Longitudinal 6#4
spiral #3@10.2 cm

1,810.4 756.2 1,685.9 2.39 1.07

SH1R (RCFST) 32.4 12.7 0.39 0.6 54.8 31 23,677 399.9 Longitudinal 6#4
spiral #3@7.6 cm

1,797.1 756.2 1,685.9 2.38 1.07
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of the flexibility of the components of the test setup, the upper part
of the pantograph, including the loading beam and the pantograph
diagonals, was modeled together with the shear specimen and the
stiffener modules. A complete discussion of the test setup is avail-
able in Bruneau et al. (2018).

A half-finite-element model was built taking advantage of the
symmetry existing in the test setup. The concrete infill was modeled
using constant stress solid elements, and the steel tube was modeled
using LS-Dyna’s default shell elements (Belytschko-Tsay shell
element) with three integration points through the element thick-
ness. A Winfrith concrete material model (MAT085) in LS-Dyna
(LSTC 2013) was used for the concrete, and a bilinear elastoplastic
material with 1% strain hardening was used for the steel. The aver-
age material properties measured by the steel coupon and concrete
cylinder tests were used. The contact at the interface of the tube and
concrete infill was defined using the Automatic Single Surface Con-
tact algorithm. This contact type is a penalty-based contact, which
allows the compression load to be transferred between slave nodes
and master segments. The Automatic Single Surface Contact algo-
rithm is a two-way treatment contact, which means that the master
and slave nodes are checked for penetration through each other (note
that analyses using one-way treatment contact algorithms were also
conducted, but those contact elements only check the penetration of
slave nodes through the master segments at the contact interface;
results from those analyses were unsatisfactory and are not reported
here). In the surface contact model used, a friction force develops at
the interface when the adjacent parts press on each other and want to
slide against each other. A friction coefficient of 0.5 was used at the
interface. Sliding will occur when the shear force between the two
surfaces reaches the sliding force resistance, which is equal to the
compression force at the contact multiplied by a corresponding fric-
tion coefficient. No constraints between the concrete fill and the
steel tube were used at the ends of the specimen.

The contact between the end surfaces of the specimen’s con-
crete fill and the pantograph’s mounting plates was modeled using
a similar contact algorithm. The contact between the end edges of
the steel tube and the mounting plates was modeled using a node-
to-surface contact algorithm, which uses the same contact concept
as discussed earlier. The nodes at the edge of the steel tube shell
elements and the surface of the mounting plates in contact with the
steel tube were assigned to the slave nodes and master surface of the
contact algorithm, respectively. A tie contact was used to model
all the weld connections in the model. These connections exist

between the stiffener plates and the specimen’s steel tube. Other
details regarding the finite-element modeling of the pantograph,
stiffener modules, high-strength bolts, and so forth can be found in
Bruneau et al. (2018). To reduce the runtime of the finite-element
analyses, the repeated cycles at each nonlinear displacement am-
plitude in the test loading protocol were not considered in the cyclic
displacement history applied to the finite-element model. Note that
the test results for the RCFST shafts were generally similar to those
for the CFST shear specimen (i.e., Specimen SH4) because the con-
tribution of internal reinforcement to the total shear strength was
found to be of little significance. For this reason, finite-element
analysis results here are shown only for the CFST shear specimen.

Fig. 3 shows the finite-element results for Specimen SH4 [32.4-
cm (12.75-in.)-diameter CFST]. In this figure, the numerically ob-
tained hysteresis curves are compared with the experimental re-
sults, with the horizontal axis displaying the shear displacements
between two ends of the shear span (i.e., the unstiffened part of
the CFTS that is under shear deformations).

As shown in Fig. 3, the initial stiffness of the specimen in the
shear span was well matched with the experimentally obtained re-
sults. The shear forces were also matched until the cycle in which
the experimental shear strength of the specimen was achieved. No
failure criteria were defined for the concrete and steel materials, and
therefore no failure was exhibited by the finite-element analyses. In
fact, in the finite-element analyses, the concrete’s strength kept in-
creasing progressively at larger drifts. This increase was consistent
with the development of a diagonal compression strut in the con-
crete. This behavior is observed in Fig. 1.

As shown in this figure, the shear strength for the concrete part
given by AASHTO BDS (AASHTO 2014) and WSDOT BDM
(WSDOT 2018) is significantly lower than the one given by the
finite-element results at the point where the maximum experimental
strength is reached. This can be attributed to the fact that, as dem-
onstrated in what follows, the shear strength of the concrete given
by these equations does not consider the effect of the compression
strut that develops in the concrete under shear deformations. Also,
it is observed in Fig. 1(a) that the shear strength of the steel tube
given by AASHTO BDS (AASHTO 2014) matches the first yield
strength obtained from finite-element analysis, but it underesti-
mates the shear strength contribution of the steel at the maximum
experimental strength point. As shown in Fig. 1(b), WSDOT BDM
(WSDOT 2018) overestimates the shear strength of the steel tube
by about 100% and 50% at the first yield and maximum experimen-
tal strength points, respectively.

Fig. 2. Scheme of the developed LS-Dyna finite-element model for
shear tests.
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Proposed Shear Strength Equation

As shown in the previous section, the shear strength values cal-
culated using the WSDOT BDM (WSDOT 2018) equation for
the tested RCFST shear specimens were close to the test results.
However, the breakdown of the total shear strength into the relative
contributions of the steel tube and concrete shows that the WSDOT
BDM (WSDOT 2018) equation underestimates the contribution to
the total shear strength from the concrete part and overestimates the
shear strength provided by the steel tube. The proposed alternative
shear strength equation considers the developed compressive diago-
nal strut in the concrete and its interaction with the steel tube. Note
that the potential contribution of the reinforcing cage to the total
shear strength is not included in this equation because the effect of
the reinforcing cage was shown to have no significant impact on
shear strength in the experiments reported by Bruneau et al. (2018).

To investigate the behavior of the RCFST members under shear
deformation, a series of finite-element analyses were performed
(the developed models did not include reinforcing cages, for the
same reason mentioned earlier). Fig. 4 shows a schematic view
of the finite-element models developed for the analyses. The finite-
element models were developed using the element types and
material models of the finite-element models used in the validated
finite-element model discussed previously. Taking advantage of the
symmetry existing in circular CFSTs under shear deformation, a
half-finite-element model was built for the analyses with applied
appropriate symmetry boundary conditions. A Winfrith concrete
model (MAT085) in LS-Dyna (LSTC 2013) with constant stress
solid elements was used for the concrete infill part. The steel tube
part was modeled using bilinear elastoplastic material with shell el-
ements with three integration points along the thickness. No strain
hardening was assumed for the steel material. The uniaxial compres-
sive strength of the concrete and yield stress of the steel tube were
assumed to be 35.9 (5.2) and 399.9 MPa (58 ksi), respectively. The
modulus of elasticity of the concrete was calculated according to
Section 19.2 of ACI 318 (ACI 2014) as 35,853 MPa (5,200 ksi).
The boundary conditions were defined to simulate a double curva-
ture setup, and a monotonically increasing loading was applied at
the top. The CFST member was not modeled beyond the shear span.
The composite condition was modeled by constraining the slippage
between the steel tube and concrete core at both ends of the model.
In these regards, the bottom of the model was fixed (i.e., the bottom
was not able to move and rotate). This was done by selecting all the
nodes at the bottom of the model and fixing the nodes. The con-
straints at the top of the model were assigned in such a way as
to allow side and axial movements but no rotation. This was done
by assigning all the nodes at the top of the model to a rigid body
constraint with corresponding boundary conditions to fix the rota-
tion. The contact between concrete and steel tube was modeled us-
ing normal surface-to-surface contact with a friction coefficient of
0.5. Note that the length of the members above and below the shear

zone is sufficient to achieve development of the necessary friction
forces between the steel and concrete, except for those instances
where such lengths would be nearly nonexistent (Roeder et al.
2016). The finite-element analyses that were conducted on the
CFSTs with different shear spans and boundary conditions showed
that the development of the compression strut typically depends on
the shear span and the composite action of the CFST.

According to the finite-element analyses, three different behav-
iors can be attributed to the developing compression strut with re-
spect to the CFSTs’ shear span-to-concrete-diameter (a=D) ratios.
For a=D < 0.25, the strut size is governed by the length of the
shear span a, while for 0.25 < a=D < 0.5, it is governed by the
diameter of the concrete core. For a=D exceeding 0.5, the strength
of the compression strut was not significant and a combined shear-
flexural failure type was observed.

Figs. 5–10 show the typical finite-element analysis results for
the shear response, expressed by the three-dimensional illustra-
tions of the developing compression strut at various deformations
for 30.5-cm (12-in.)-diameter CFSTs for three different a=D values,
each of which falls in one of the three different a=D ranges discussed
in the previous paragraph. For each a=D value, the first figure shows
the relative contribution of the steel and concrete to the total shear
strength and identifies the 12 shear displacement values for which
three-dimensional illustrations of isosurfaces of the minimum prin-
cipal stresses in the concrete core are presented in the second figure.
The shear displacement was measured as the displacement between
the top and bottom of the member under the double curvature load-
ing setup. The minimum principal stress represents the compres-
sion field in the concrete. To more clearly illustrate the development
of the compression strut, principal stresses lower than 17.2 MPa
(2.5 ksi) are not shown in these figures. The range of the plotted
minimum principal stresses is shown on the right side of each figure.

Based on the finite-element results, a significant compression
strut can be seen to develop in Figs. 6 and 8 for a=D values of 0.4
and 0.12, which fall within the 0.25 < a=D < 0.5 and a=D < 0.25
ranges, respectively. Clearer illustrations of the strut developing in
these models are shown in Fig. 11. For both ranges, it was observed
that the centerplane of the compression strut passed through the
intersection line of a horizontal plane at member’s midheight and
vertical centerplane that is perpendicular to the direction of the
shear loading. This is illustrated in Fig. 11 for the specific examples.
The crossing angle is 45°. As shown in these figures, under this as-
sumption the cross-sectional area of the strut is at its maximum at
the middle of the height of the member (middle of the free span) and
reduces toward both ends of the shear span. Also, it is seen that the
stress distribution throughout the strut is not uniform. In fact, the

Fig. 4. Loading and boundary conditions for finite-element models.
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Fig. 5. Shear response of 12OD CFST with a=D ¼ 0.4.
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compressive stresses are higher at both ends of the strut compared to
its middle. This could be attributed to the development of higher
confining stresses at both ends of the shear member.

The critical cross section over which the concrete strut is devel-
oped can be assumed to be located at the midlength of the strut;
a uniformly distributed stress equal to f 0

c was assumed to develop
in that cross section based on observation of the magnitude of the
compressive stresses obtained from the finite-element analyses.
Fig. 12(a) shows the definition the critical cross section. This cross-
sectional area of the strut (AStrut), from geometry, as shown in
Fig. 12(a), can be calculated by Eq. (7):

AStrutðexactÞ ¼
ffiffiffi
2

p

2

�
4R2

casin

�
b

2Rc

�
þ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4R2

c − b2
q �

ð7Þ

where

b ¼ Dc −H
2

; 0 ≤ b ≤ H
2

and Rc ¼ Dc=2; Dc = concrete core diameter; H = height of speci-
men in double curvature shear setup, which is equal to 2a. An
approximate simpler formula for the strut cross-sectional area, which
was developed by calculating the area of an assumed rectangle that is
inscribed inside the strut cross-sectional area, is also given in Eq. (8):

AStrutðapprox:Þ ¼
ffiffiffi
2

p
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4R2

c − b2
q

ð8Þ

The strut force FStrut is calculated by multiplying the uniaxial
unconfined compressive strength of the concrete by AStrut [Eq. (9)].
The resulting strut force can be decomposed into horizontal and ver-
tical force components, as shown in Fig. 13 and calculated in
Eq. (10). The horizontal force component (VStrut) is considered
as the shear strength of the strut:

FStrut ¼ f 0
c × AStrut ð9Þ

VStrut ¼
ffiffiffi
2

p

2
× FStrut ð10aÞ

PStrut ¼
ffiffiffi
2

p

2
× FStrut ð10bÞ

In a composite CFST member that is under shear deformation,
the vertical force component (PStrut) of the strut transfers to the steel
tube as a tensile axial load, as shown in Fig. 13. This PStrut force can
be considered a uniform axial compressive and tensile force on the
concrete core and the steel tube, respectively.

The shear strength of the concrete core of the CFST (VConc)
when a strut develops is therefore assumed to be equal to VStrut.
When no strut develops, the shear strength of concrete can be
calculated using the existing shear strength equations developed
for the shear strength of the RC members in the absence of strut.
Therefore, a lower limit of concrete shear strength (Vc) was defined
here for VConc, as shown in Eqs. (11) and (12). In Eq. (12), the term

1 2 3 4 

5 6 7 8 

9 10 11 12 

Fig. 6. Three-dimensional illustrations of isosurfaces of minimum principal stresses in concrete core at steps marked in Fig. 5.
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Fig. 7. Shear response of 12OD CFST with a=D ¼ 0.12.
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outside the parentheses is the nominal shear resistance of the con-
crete from AASHTOBDS (AASHTO 2014), Article 5.8.3.3. In this
equation, β is a “factor indicating the ability of diagonally cracked
concrete to transfer tension and shear” and was taken to be equal to
2.0. The term inside the parentheses was added to include the axial
load effect on the shear resistance of the concrete. This term was
adopted from ACI 318 (ACI 2011, 2014), Article 22.5.6:

VConc ¼ maxðVStrut;VcÞ ð11Þ
where

Vc ¼ 0.01286β
ffiffiffiffiffi
f 0
c

p
Ac

�
1 þ PStrut

2Ac

�
ð12Þ

To calculate the nominal shear resistance of the steel tube
here, it was assumed that the tube cross section was fully yielded
under combined tension and shear, and the effect of bending mo-
ment was neglected. In this case, the total shear resistance of the

steel tube (Vs) can be calculated by integrating the maximum shear
stress (which is tangent to the surface) over the steel tube cross sec-
tion, as shown in Fig. 14 and calculated in Eq. (13):

Vs ¼ 2

Z π
2

−π
2

τ s;maxRt cosðϕÞdϕ ð13Þ

where R = average radius of steel tube; and τ s;max = maximum shear
stress on steel tube cross section, calculated as

τ s;max ¼ 1ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
y − T2

q
ð14Þ

Fy = yield stress of steel tube; and T = resultant tensile stress on
steel tube cross section due to interaction of concrete strut with steel
tube (Fig. 13).

The resulting Vs obtained from Eq. (13) is shown in Eq. (15).
The term under the square root shows that the shear strength of the
steel tube reduces as the strut force increases and PStrut should be
less than AsFy (for a diagonal strut at 45°PStrut ¼ VStrut). In other
words, the upper limit for the tensile axial load in the steel tube
is when the tensile axial load on the steel tube equals the yield
strength of the steel tube cross section. This situation is unlikely to
happen, but the upper limit was nonetheless considered for the strut
force (FStrut) as shown in Eq. (16):

Vs ¼ 4Dt

2
ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
y −

�
PStrut

As

�
2

s
ð15Þ

VStrut ¼ PStrut ¼ min

� ffiffiffi
2

p

2
f 0
c × AStrut;AsFy

�
ð16Þ

Finally, the nominal shear capacity of the composite CFST shaft
is taken here as equal to the summation of the shear strength of the
concrete core and the steel tube, as shown in Eq. (17). As men-
tioned earlier, the potential contribution of the reinforcing cage to
the total shear strength is not included in this equation:
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Fig. 8. Three-dimensional illustrations of isosurfaces of minimum principal stresses in concrete core at steps marked in Fig. 7.
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Fig. 9. Shear response of 12OD CFST with a=D ¼ 0.8.
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VCFST ¼ Vs þ Vconc ð17Þ

Note that, as mentioned earlier, in the calculation of the shear
contribution of the steel tube, the effect of the moment was ne-
glected. In the case of an existing moment on the cross section,
such as at the end of the span in the double curvature setup shown
in Fig. 4, its effect can be considered in the steel tube shear strength
by including the stresses from the bending moment in Eq. (13) as
follows:

VsM ¼ 2Rt
Z

π=2

−π=2
1ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
y−

�
MR
I

sinðϕÞþT

�
2

s
× cosðϕÞdϕ ð18Þ

where M = bending moment on steel tube cross section only; and
I = moment of inertia of steel tube cross section. It is assumed that
the flexural stresses at the end of span are in the elastic range. Also,
the moment carried by the steel tube is equal to VsM ×H=2 and the
neutral axis is at the center of gravity of the cross section. This
assumption was made to solve to the integral of Eq. (18). The con-
tribution of the steel tube in this case is calculated using Eq. (19):

VsM ¼ Rt

σb

ffiffiffi
3

p

0
B@ðσb þ TÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−σ2

b − 2σbT þ F2
y − T2

q

þ F2
ytan−1

0
B@ σb þ Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F2
y − ðσb þ TÞ2

q
1
CA

− ðT − σbÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−σ2

b þ 2σbT þ F2
y − T2

q

− F2
ytan−1

0
B@ T − σbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F2
y − ðT − σbÞ2

q
1
CA

1
CA ð19Þ

where σb ¼ VsMRH=2I. Eq. (19) is an implicit equation in terms
of Vsm and needs to be numerically solved using an iterative

process. The proposed shear strength in Eq. (17) was compared
to finite-element results with different shear-span-to-diameter ratios
in Fig. 15.

The proposed shear strength was compared to different steel
tube yield strengths, uniaxial compressive strengths of concrete,
and different ratios of shear span to diameter (a=D) in Figs. 15 and
16(a and b), respectively. In these figures the vertical axis shows the
proposed shear strength divided by the summation of shear yield
strength of the steel tube considering no buckling and pure shear
strength of concrete fill as calculated by Eqs. (1) and (4), respec-
tively. Also, Mp in Fig. 15 is the composite section plastic moment
calculated using the plastic stress distribution method (PSDM). The
plastic moment divided by shear span (i.e., Mp=a) is the shear
capacity of the member under flexural dominant failure.

Figs. 15(a and b) show the cases in which the bending moment
is neglected or it is included in calculating the shear strength, re-
spectively. The difference in the steel tube shear strength between
these two cases is less than 8% for a=D < 0.5. This difference in-
creases with a=D ratio.

Consideration of External Axial Compressive Load

To account for the effect of an applied external compressive axial
load (Paxial) on the nominal shear strength of the composite CFSTs,
it was assumed that the external load was distributed between the
steel tube and the concrete core proportionally to each component’s
axial stiffness. The portion of the applied Paxial that goes to each
component is therefore calculated per Eq. (20):

Paxial ¼ Ps þ Pc ð20aÞ

Ps − PStrut ≤ AsFy & Pc þ PStrut ≤ f 0
cAc ð20bÞ

Ps ¼ Paxial
EsAs

EsAs þ EcAc
≤ AsFy ð20cÞ

Pc ¼ Paxial − Ps ≤ f 0
cAc ð20dÞ
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Fig. 10. Three-dimensional illustrations of isosurfaces of minimum principal stresses in concrete core at steps marked in Fig. 9.
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In Eq. (20), Paxial = applied axial load on composite section;
Ps = proportion of external axial load resisted by steel tube; Pc =
proportion of external axial load resisted by concrete infill; Ec =
modulus of elasticity of concrete; and other parameters are as
defined earlier in the text. Note that the applied load resisted by
each component cannot be more than their axial capacity consid-
ering no stability effects. This means that Ps and Pc cannot be more
than AsFy and f 0

cAc, respectively.
Considering the applied external axial load on each component,

the nominal shear strength of steel tube and the concrete core were
modified as shown in Eqs. (21)–(23). Note that the presence of an
applied compressive axial load reduces the shear strength of the steel
tube and increases the concrete shear strength. In Eq. (23), a factor
αðPc;AcÞ is introduced to consider the possible increasing effect of
the axial load on the strength of the compression strut, but that effect
is neglected in all further calculations here [i.e., αðPc;AcÞ ¼ 1]:

Vs ¼ 4Dt

2
ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
y −

�
PStrut − Ps

As

�
2

s
ð21Þ

Vc ¼ 0.01286β
ffiffiffiffiffi
f 0
c

p
Ac

�
1 þ PStrut þ Pc

2Ac

�
ð22Þ

VStrut ¼ PStrut ¼min

� ffiffiffi
2

p

2
f 0
cAStrut ×αðPc;AcÞ;AsFy þPs

�
ð23Þ

Comparison of Proposed Shear Strength with
Experimental Data

The proposed nominal shear strength obtained per the foregoing
equations was compared with the results of the tests done by
Bruneau et al. (2018) and other researchers (Qian et al. 2007;

Fig. 11. Definition of diagonal compression strut in RCFST with (a) 0.25 < a=D < 0.5; and (b) a=D < 0.25.
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Xu et al. 2009; Xiao et al. 2012; Nakahara and Tsumura 2014; Ye
et al. 2016; Roeder et al. 2016). Table 3 shows a comparison of the
experimentally obtained shear strengths of the specimens tested by
Bruneau et al. (2018) with the calculated shear strengths obtained
using the proposed equation. For all the RCFST specimens, the
experimental values are on average 55%, 7%, and 137% more than
the shear strength calculated by the previously proposed formula,
WSDOT BDM (WSDOT 2018) and AASHTO BDS (AASHTO
2014), respectively. None of the composite specimens tested by
Bruneau et al. (2018) reached their theoretical plastic flexural
capacity (Mp). In these tests shear was the governing behavior,
and the specimens failed under shear dominant mode. Note that
none of the existing test data were tested under a pure shear

condition. In fact, there is always a combination of flexure, shear,
and axial behavior and failure.

The shear forces carried by the steel tube and the concrete core
parts from the finite-element analysis of the tested shear Specimen
SH4 were compared to values obtained from the proposed formula
in Fig. 17. Comparing the values at the maximum experimental
strength point in this figure, the proposed equation gives a good
estimate of the shear strength respectively resisted by the steel tube
and the concrete compared to WSDOT BDM (WSDOT 2018) and
AASHTO BDS (AASHTO 2014), as shown in Fig. 1. Note that
both the proposed method and the WSDOT BDM (WSDOT 2018)
in particular give a good estimate of the total shear strength of a
composite RCFST. However, the WSDOT BDM (2018) does not
provide a correct estimate of the shear strength resisted by each
individual component of a RCFST.

To further compare with experimental results, the ratios of the
shear strength obtained experimentally and obtained using the
proposed equation have been calculated for the available data from
tests by Qian et al. (2007), Xu et al. (2009), Xiao et al. (2012),
Nakahara and Tsumura (2014), Ye et al. (2016), and Roeder et al.
(2016) (presented in Tables 4 and 5 for tests without and with
axial load, respectively) and Bruneau et al. (2018) (from Tables 2
and 3). Values of this ratio are plotted in Fig. 18 for specimens
for which no axial load was applied. Note that values of the
experimentally applied moments to the plastic moment, Mexp/Mp,
included in Tables 4 and 5 show that the values plotted here
correspond to specimens that exhibited shear-dominant failures

Fig. 12. Cross-sectional area of diagonal compression strut at critical location: (a) definition of area; and (b) comparison of exact and approximate
values with respect to span height.

Steel 
tube

Concrete 
infill

Fig. 13. Horizontal and vertical components of strut force.

Steel tube 
cross-section

Fig. 14. Shear distribution on steel tube cross section.
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(i.e., not flexure-dominant failures). The maximum calculated
ratio of Mexp/Mp is 1.2. The horizontal axis in this figure represents
the shear-span-to-diameter (a=D) ratio. The mean and standard
deviation values of the results are included in the figure. As shown,
on average, the experimental values are about 50% more than the
values predicted by the proposed formula.

The experimental-to-proposed shear strength ratios for all the
available test data, also including specimens for which axial load
was applied, are shown in Fig. 19. Fig. 19(a) shows the ratio of
experimental to calculated shear strengths versus the applied exter-
nal axial load, and Fig. 19(b) shows this ratio versus the shear-span-
to-diameter ratio. As shown, on average, the experimental values

are about 75% more than the values predicted by the proposed for-
mula. According to Fig. 19(a), the proposed formula gives more
conservative values for cases with more than 0.5P=P0 applied axial
load. Also, Fig. 19(b) shows that the predicted values using the
proposed formula are more conservative for a=D ratios of less than

Table 3. Comparison of test specimens of Bruneau et al. (2018) with pro-
posed equation

Specimen
Vexp
(kN)

VCFST
(kN)

Mexp

Mp

Vexp

VCFST

VStrut

VCFST

Vs

VCFST

Vconc

VCFST

SH2 1,943.9 1,214.3 0.83 1.60 0.21 0.79 0.21
SH4 1,761.5 1,156.5 0.80 1.52 0.24 0.76 0.24
SH5 1,765.9 1,156.5 0.73 1.53 0.24 0.76 0.24
SH6 1,841.6 1,156.5 0.69 1.59 0.24 0.76 0.24
SH7 1,810.4 1,156.5 0.75 1.57 0.24 0.76 0.24
SH1R 1,797.1 1,156.5 0.74 1.55 0.24 0.76 0.24
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Fig. 15. Normalized proposed shear strength versus shear span to diameter ratios when (a) bending moment effects are neglected; and (b) bending
moment effects are included.
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Fig. 16. Normalized proposed shear strength versus (a) yield strength of steel tube; and (b) uniaxial compressive strength of concrete.
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Fig. 17. Comparison of component shear forces of 32.4 cm (12.75 in.)
shear specimen (SH4) using proposed formula.
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Table 4. Existing experimental properties, results, and comparison with proposed equation for tests without axial load

Specimen
OD
(cm)

a
(cm)

a
OD t (cm)

D
t

f 0
c

(MPa)
Ec,

(MPa)
fy

(MPa)
P
Po

P
(kN)

Vexp
(kN)

VCFST
(kN)

Vexp

VCFST

Mexp
(kN · m)

Mp
(kN · m)

Mexp

Mp

Roeder et al. (2016)
R12 50.8 25.4 0.5 0.59 86 42.7 27,793 372 0 0 2,896 1499 1.93 8826 8,421 1.05
R19 50.8 25.4 0.5 0.89 57 62.7 33,723 393 0 0 4,235 2300 1.84 12907 13,129 1.05
R7 50.8 19.1 0.38 0.59 86 44.8 28,345 345 0 0 3,136 2362 1.33 7169 7,899 1.05
R8 50.8 19.1 0.38 0.59 86 44.8 28,414 372 0 0 3,567 2464 1.45 8155 8,450 1.05
R10 50.8 19.1 0.38 0.59 86 42.7 27,676 372 0 0 2,958 2411 1.23 6763 8,415 1.05
R11 50.8 19.1 0.38 0.59 86 45.5 28,696 393 0 0 2,669 2562 1.04 6101 8,882 1.05
R16 50.8 19.1 0.38 0.59 86 59.3 32,750 393 0 0 3,403 2887 1.18 7779 9,071 1.05
R21 50.8 19.1 0.38 0.59 86 0 0 393 0 0 1,997 1357 1.47 4566 6,996 1.05
R14 50.8 12.7 0.25 0.59 86 59.3 32,730 379 0 0 3,674 3772 0.97 5599 8,864 1.05
R15 50.8 12.7 0.25 0.59 86 60.7 33,109 379 0 0 3,541 3683 0.96 5396 8,880 1.05
R20 50.8 12.7 0.25 0.59 86 19.3 18,644 393 0 0 3,167 2411 1.31 4827 8,255 1.05

Ye et al. (2016)
Ye1 11.9 1.8 0.15 0.20 60 31.7 24,001 338 0 0 240.2 155.7 1.54 52 137 0.38
Ye2 11.9 1.8 0.15 0.20 60 31.7 24,001 338 0 0 240.2 155.7 1.55 53 137 0.38

Nakahara and Tsumura (2014)
N1 16.5 8.4 0.5 0.49 33.9 64.1 36,791 545 0 0 667.2 533.8 1.25 666 967 0.69

Xiao et al. (2012)
X1 16.0 6.4 0.4 0.55 29 26.2 21,629 379 0 0 627 423 1.48 480 658 0.73
X2 16.0 6.4 0.4 0.55 29 32.4 24,194 379 0 0 676 432 1.56 518 667 0.78
X3 16.0 6.4 0.4 0.55 29 29.6 23,084 379 0 0 649 427 1.52 499 663 0.75
X4 16.5 6.6 0.4 0.44 38 26.2 21,629 345 0 0 516 343 1.51 408 541 0.75
X5 16.5 6.6 0.4 0.44 38 32.4 24,194 345 0 0 569 356 1.6 450 550 0.82
X6 16.5 6.6 0.4 0.44 38 29.6 23,084 345 0 0 525 347 1.51 416 546 0.76
X7 16.5 6.6 0.4 0.3 55 26.2 21,629 407 0 0 374 289 1.3 297 446 0.66
X8 16.5 6.6 0.4 0.3 55 32.4 24,194 407 0 0 414 303 1.38 328 456 0.72
X9 16.5 6.6 0.4 0.3 55 29.6 23,084 407 0 0 387 294 1.31 305 452 0.68
X25 16.0 2.3 0.14 0.55 29 26.2 21,629 379 0 0 498 467 1.07 132 658 0.20
X26 16.0 2.3 0.14 0.55 29 32.4 24,194 379 0 0 525 485 1.08 138 667 0.21
X27 16.0 2.3 0.14 0.55 29 29.6 23,084 379 0 0 552 476 1.15 145 663 0.22
X28 16.0 2.3 0.14 0.55 29 29.6 23,084 379 0 0 698 476 1.47 184 663 0.28
X29 16.5 2.3 0.14 0.44 38 29.6 23,084 345 0 0 649 391 1.65 179 546 0.33
X30 16.5 2.3 0.14 0.3 55 29.6 23,084 407 0 0 449 338 1.34 125 452 0.28
X31 16.5 2.3 0.14 0.44 38 26.2 21,629 345 0 0 525 383 1.38 145 541 0.27
X32 16.5 2.3 0.14 0.44 38 32.4 24,194 345 0 0 574 405 1.43 159 550 0.29
X33 16.5 2.3 0.14 0.44 38 29.6 23,084 345 0 0 560 391 1.43 156 546 0.28
X34 16.5 2.3 0.14 0.3 55 26.2 21,629 407 0 0 400 325 1.23 110 446 0.25
X35 16.5 2.3 0.14 0.3 55 32.4 24,194 407 0 0 427 347 1.23 118 456 0.26
X36 16.5 2.3 0.14 0.3 55 29.6 23,084 407 0 0 409 338 1.22 113 452 0.25
X55 16.0 8.1 0.5 0.65 25 20 19,057 448 0 0 752 552 1.36 729 884 0.82
X56 16.0 16.0 1 0.65 25 20 19,057 448 0 0 538 552 0.98 1044 884 1.18
X57 16.5 8.4 0.5 0.41 40 20 19,057 407 0 0 440 334 1.33 439 576 0.76
X58 16.5 16.5 1 0.41 40 20 19,057 407 0 0 325 334 0.97 641 576 1.11

Xu et al. (2009)
Xu16 14.0 1.5 0.1 0.37 38 33.8 24,656 365 0 0 414 276 1.49 69 346 0.20
Xu17 14.0 2.8 0.2 0.37 38 33.8 24,656 365 0 0 369 334 1.11 123 346 0.36
Xu18 14.0 4.3 0.3 0.37 38 33.8 24,656 365 0 0 356 320 1.11 179 346 0.52
Xu19 14.0 7.1 0.5 0.37 38 33.8 24,656 365 0 0 303 231 1.32 255 346 0.74
Xu26 14.0 1.5 0.1 0.37 38 33.8 24,656 365 0 0 391 276 1.41 255 346 0.74
Xu27 14.0 2.8 0.2 0.37 38 33.8 24,656 365 0 0 351 334 1.05 65 346 0.19
Xu28 14.0 4.3 0.3 0.37 38 33.8 24,656 365 0 0 334 320 1.04 118 346 0.34

Qian et al. (2007)
Q1 19.6 2.0 0.1 0.55 35 40.7 27,041 331 0 0 1,272 547 2.32 294 963 0.31
Q2 19.3 2.0 0.1 0.75 26 40.7 27,041 421 0 0 1,286 845 1.52 298 1,491 0.20
Q7 19.6 3.0 0.15 0.55 35 40.7 27,041 331 0 0 1,953 614 3.17 685 963 0.71
Q8 19.3 3.0 0.15 0.75 26 40.7 27,041 421 0 0 2,037 912 2.23 715 1,491 0.48
Q9 19.6 2.0 0.1 0.55 35 55.8 31,689 331 0 0 2,228 596 3.73 517 1,109 0.47
Q10 19.3 2.0 0.1 0.75 26 55.8 31,689 421 0 0 1,259 894 1.41 292 1,622 0.18
Q15 19.6 3.0 0.15 0.55 35 55.8 31,689 331 0 0 1,023 689 1.49 359 1,109 0.32
Q16 19.3 3.0 0.15 0.75 26 55.8 31,689 421 0 0 1,001 988 1.01 351 1,622 0.22
Q17 19.3 5.8 0.3 0.75 26 55.8 31,689 421 0 0 1,757 1005 1.75 1227 1,622 0.76
Q28 19.6 2.0 0.1 0.55 35 67.6 34,922 331 0 0 1,450 636 2.28 336 1,197 0.28
Q29 19.3 2.0 0.1 0.75 26 67.6 34,922 421 0 0 1,770 934 1.89 409 1,706 0.24
Q34 19.6 3.0 0.15 0.55 35 67.6 34,922 331 0 0 1,286 743 1.73 450 1,197 0.38
Q35 19.3 3.0 0.15 0.75 26 67.6 34,922 421 0 0 979 1045 0.94 343 1,706 0.20
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0.2. Note that for the Roeder et al. (2016) tests, the specimens that
reportedly had a dominant flexural failure were excluded in the cal-
culation of mean and standard deviation. For the Ye et al. (2016)
tests, the specimens with shear-span-to-diameter ratios of less than

0.1 were also excluded in the evaluation of the proposed shear for-
mula. Here, all the other available data for the variety of a=D values
were used in evaluating the performance of the proposed equation.
However, not all the tested specimens may have had a shear failure

Table 5. Existing experimental properties, results, and comparison with proposed equation for tests with axial load

Specimen
OD
(cm)

a
(cm)

a
OD t (cm)

D
t

f 0
c

(MPa)
Ec,

(MPa)
fy

(MPa)
P
Po

P
(kN)

Vexp
(kN)

VCFST
(kN)

Vexp

VCFST

Mexp
(kN · m)

Mp
(kN · m)

Mexp

Mp

Roeder et al. (2016)
R13 50.8 19.1 0.38 0.59 86 36.5 25,766 372 0.085 898.5 3,158 2,295 1.38 7,219 8,316 0.87

Ye et al. (2016)
Ye3 11.9 1.8 0.15 0.2 60 31.7 24,001 338 0.24 142.3 267 160 1.68 58 137 0.42
Ye4 11.9 1.8 0.15 0.2 60 31.7 24,001 338 0.24 142.3 254 160 1.58 54 137 0.40
Ye5 11.9 1.8 0.15 0.2 60 31.7 24,001 338 0.59 346.9 316 156 2.02 69 137 0.50
Ye6 11.9 1.8 0.15 0.2 60 31.7 24,001 338 0.59 346.9 320 156 2.04 69 137 0.50
Ye7 11.9 1.8 0.15 0.2 60 31.7 24,001 338 0.73 431.5 334 151 2.17 72 137 0.53
Ye8 11.9 1.8 0.15 0.2 60 31.7 24,001 338 0.73 431.5 316 151 2.07 69 137 0.50
Ye11 11.9 1.8 0.15 0.2 60 31.7 24,001 338 0.49 289.1 289 160 1.82 62 137 0.46
Ye12 11.9 1.8 0.15 0.2 60 31.7 24,001 338 0.49 289.1 285 160 1.8 61 137 0.45
Ye13 11.9 6.1 0.5 0.2 60 31.7 24,001 338 0.49 289.1 174 107 1.63 126 137 0.92
Ye14 11.9 6.1 0.5 0.2 60 31.7 24,001 338 0.49 289.1 196 107 1.81 140 137 1.02
Ye17 11.9 1.8 0.15 0.2 60 57.2 32,199 338 0.34 289.1 351 214 1.67 76 144 0.53
Ye18 11.9 1.8 0.15 0.2 60 57.2 32,199 338 0.34 289.1 338 214 1.59 73 144 0.51
Ye19 11.9 1.8 0.15 0.3 40 31.7 24,001 414 0.37 289.1 391 236 1.67 84 235 0.36
Ye20 11.9 1.8 0.15 0.3 40 31.7 24,001 414 0.37 289.1 391 236 1.66 84 235 0.36

Nakahara and Tsumura (2014)
N2 16 7.9 0.5 0.23 70.5 66.2 38,990 503 0.10 182.4 485 249 1.94 465 428 1.08
N3 16.5 8.4 0.5 0.49 33.9 64.1 36,791 545 0.30 774 721 560 1.28 719 967 0.74
N4 16 7.9 0.5 0.23 70.5 66.2 38,990 503 0.30 547.1 427 271 1.58 411 428 0.96
N5 16.5 8.4 0.5 0.5 33 48.3 33,695 545 0.10 226.8 681 547 1.25 679 949 0.72
N6 16.5 8.4 0.5 0.5 33 48.3 33,695 545 0.20 453.7 694 552 1.25 689 949 0.73
N7 16.5 8.4 0.5 0.5 33 48.3 33,695 545 0.40 911.8 658 556 1.19 656 949 0.69
N8 16 7.9 0.5 0.23 70.5 66.2 38,990 503 0.15 271.3 454 254 1.78 435 428 1.02
N9 16 7.9 0.5 0.23 70.5 66.2 38,990 503 0.20 364.7 498 262 1.92 480 428 1.12

Xiao et al. (2012)
X10 16 6.4 0.4 0.55 29 26.2 21,629 379 0.32 467 730 414 1.76 559 658 0.85
X11 16 6.4 0.4 0.55 29 32.4 24,194 379 0.31 484.8 752 423 1.77 576 667 0.86
X12 16 6.4 0.4 0.55 29 29.6 23,084 379 0.31 471.5 778 418 1.86 599 663 0.90
X13 16.5 6.6 0.4 0.44 38 26.2 21,629 345 0.31 395.9 632 338 1.87 499 541 0.92
X14 16.5 6.6 0.4 0.44 38 32.4 24,194 345 0.30 418.1 654 351 1.87 517 550 0.94
X15 16.5 6.6 0.4 0.44 38 29.6 23,084 345 0.30 400.3 676 343 1.96 534 546 0.98
X16 16.5 6.6 0.4 0.3 55 26.2 21,629 407 0.30 342.5 480 285 1.68 380 446 0.85
X17 16.5 6.6 0.4 0.3 55 32.4 24,194 407 0.28 355.8 485 303 1.61 384 456 0.84
X18 16.5 6.6 0.4 0.3 55 29.6 23,084 407 0.28 342.5 494 294 1.68 392 452 0.87
X19 16 6.4 0.4 0.55 29 26.2 21,629 379 0.64 934.1 703 374 1.89 540 658 0.82
X20 16 6.4 0.4 0.55 29 32.4 24,194 379 0.62 974.1 810 383 2.11 622 667 0.93
X21 16.5 6.6 0.4 0.44 38 26.2 21,629 345 0.62 796.2 649 307 2.11 515 541 0.95
X22 16.5 6.6 0.4 0.44 38 32.4 24,194 345 0.60 836.2 698 325 2.16 555 550 1.01
X23 16.5 6.6 0.4 0.3 55 26.2 21,629 407 0.60 685 547 271 2 431 446 0.97
X24 16.5 6.6 0.4 0.3 55 32.4 24,194 407 0.56 711.7 578 289 2.01 460 456 1.01
X37 16 2.3 0.14 0.55 29 26.2 21,629 379 0.32 467 899 458 1.96 237 658 0.36
X38 16 2.3 0.14 0.55 29 32.4 24,194 379 0.31 484.8 1,001 485 2.07 264 667 0.40
X39 16 2.3 0.14 0.55 29 29.6 23,084 379 0.31 471.5 952 472 2.01 251 663 0.38
X40 16.5 2.3 0.14 0.44 38 26.2 21,629 345 0.31 395.9 823 383 2.17 228 541 0.42
X41 16.5 2.3 0.14 0.44 38 32.4 24,194 345 0.30 418.1 899 405 2.22 248 550 0.45
X42 16.5 2.3 0.14 0.44 38 29.6 23,084 345 0.30 400.3 850 396 2.16 235 546 0.43
X43 16.5 2.3 0.14 0.3 55 26.2 21,629 407 0.30 342.5 676 325 2.07 186 446 0.42
X44 16.5 2.3 0.14 0.3 55 32.4 24,194 407 0.28 355.8 752 351 2.14 207 456 0.45
X45 16.5 2.3 0.14 0.3 55 29.6 23,084 407 0.28 342.5 698 338 2.06 194 452 0.43
X46 16 2.3 0.14 0.55 29 26.2 21,629 379 0.64 934.1 939 423 2.22 248 658 0.38
X47 16 2.3 0.14 0.55 29 32.4 24,194 379 0.62 974.1 1,050 449 2.34 277 667 0.42
X48 16 2.3 0.14 0.55 29 29.6 23,084 379 0.62 938.5 1,201 440 2.73 317 663 0.48
X49 16.5 2.3 0.14 0.44 38 26.2 21,629 345 0.62 796.2 1,023 356 2.87 283 541 0.52
X50 16.5 2.3 0.14 0.44 38 32.4 24,194 345 0.60 836.2 1,050 387 2.73 290 550 0.53
X51 16.5 2.3 0.14 0.44 38 29.6 23,084 345 0.60 800.6 899 374 2.41 248 546 0.45
X52 16.5 2.3 0.14 0.3 55 26.2 21,629 407 0.60 685 765 316 2.42 212 446 0.47
X53 16.5 2.3 0.14 0.3 55 32.4 24,194 407 0.56 711.7 823 343 2.41 228 456 0.50
X54 16.5 2.3 0.14 0.3 55 29.6 23,084 407 0.57 689.4 859 329 2.6 237 452 0.53
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mode. The test result observations provided by Xiao et al. (2012)
and Ye et al. (2016) for tested specimens having a=D values as low
as 0.1 and 0.15 suggest that some of those specimens may have had
a mixed failure mode of shear combined with other local crushing
phenomena. While the results obtained using the proposed equation
are safe even when including those results (as shown in Fig. 19), by
excluding the test results of a=D ≤ 0.15, the mean value of exper-
imental-to-proposed shear strengths would improve to 1.59 with a
lower standard deviation of 0.32.

Conclusion

Finite-element analysis was used to investigate the shear behavior
and ultimate strength of composite RCFSTs. Results showed how a
compression strut developed in the presence of low shear spans and
provided the basis for developing a proposed equation to quantify
the contribution of that strut to total strength as a function of shear
span. These results and observations on behavior made it possible
to quantify the shortcomings of the shear strength design equation
provided by existing design specifications and to develop a pro-
posed mechanics-based shear strength equation for the composite
RCFST members that could account for the possible development
of a compressive diagonal strut in the concrete and its interaction

with the steel tube. The proposed equation accurately captured
the contribution of the steel tube to the total strength and conserva-
tively estimated the contribution of the concrete in composite
CFSTs. The proposed shear strength equation is based on the
governing mechanics in the shear behavior of circular composite
members and is not a mathematical fit to the finite-element and test
results. The contribution of the steel tube was analytically derived
and confirmed with the finite elements. The contribution of the

Table 5. (Continued.)

Specimen
OD
(cm)

a
(cm)

a
OD t (cm)

D
t

f 0
c

(MPa)
Ec,

(MPa)
fy

(MPa)
P
Po

P
(kN)

Vexp
(kN)

VCFST
(kN)

Vexp

VCFST

Mexp
(kN · m)

Mp
(kN · m)

Mexp

Mp

Qian et al. (2007)
Q3 19.6 2.0 0.1 0.55 35 40.7 27,041 331 0.43 930 1,250 534 2.33 290 963 0.30
Q4 19.3 2.0 0.1 0.75 26 40.7 27,041 421 0.46 1,330 1,668 810 2.06 386 1,491 0.26
Q5 19.6 2.0 0.1 0.55 35 40.7 27,041 331 0.72 1548 1,681 485 3.48 389 963 0.40
Q6 19.3 2.0 0.1 0.75 26 40.7 27,041 421 0.77 2,220 1,819 707 2.58 422 1,491 0.28
Q11 19.6 2.0 0.1 0.55 35 55.8 31,689 331 0.41 1,054 1,210 592 2.04 281 1,109 0.25
Q12 19.3 2.0 0.1 0.75 26 55.8 31,689 421 0.45 1,450 1,232 867 1.42 286 1,622 0.18
Q13 19.6 2.0 0.1 0.55 35 55.8 31,689 331 0.69 1,757 1,495 543 2.76 346 1,109 0.31
Q14 19.3 2.0 0.1 0.75 26 55.8 31,689 421 0.30 965 1,170 890 1.32 271 1,622 0.17
Q18 19.3 5.8 0.3 0.75 26 55.8 31,689 421 0.45 1,450 1,721 996 1.73 1201 1,622 0.74
Q19 19.6 5.8 0.3 0.55 35 55.8 31,689 331 0.69 1,757 1,739 712 2.44 1213 1,109 1.09
Q30 19.6 2.0 0.1 0.55 35 67.6 34,922 331 0.40 1,157 1,672 636 2.63 388 1,197 0.32
Q31 19.3 2.0 0.1 0.75 26 67.6 34,922 421 0.44 1,548 1,205 912 1.33 279 1,706 0.16
Q32 19.6 2.0 0.1 0.55 35 67.6 34,922 331 0.67 1,926 1,005 587 1.71 233 1,197 0.19
Q33 19.3 2.0 0.1 0.75 26 67.6 34,922 421 0.29 1,032 1,294 934 1.39 300 1,706 0.18

Mean

Mean+STD

Mean-STD

Fig. 18. Ratio of strength from existing test results with no axial load
and proposed shear strength formula as a function of shear span, a=D.
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Fig. 19. Ratio of strength from existing test results and proposed shear
strength formula as a function of (a) normalized applied axial load,
P=P0; and (b) shear span, a=D.
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concrete fill was derived based on a developing strut concept. In the
formulation of the strut, its critical cross-sectional area (i.e., the
cross section of the strut) was derived based on observations of
the behavior of the concrete in the finite-element results. The pro-
posed shear strength formula is a function of the ratio of shear span
to diameter, the yield strength of the steel tube, the uniaxial com-
pressive strength of the concrete, and the applied external axial load.
It does not distinguish between a shear-dominant failure and the
transition from shear-dominant to flexural-dominant failure modes
in an explicit way. In fact, it calculates the shear strength corre-
sponding to shear and flexure-shear failure modes based on the val-
ues of shear span, yield strength of the steel, and compressive
strength of the concrete. The flexural dominant failure happens
when the corresponding shear value calculated by dividing the plas-
tic moment strength by the shear span is less than the shear strength
calculated by the proposed shear strength formula.

The effectiveness of the proposed equation was compared with
shear test data from the existing literature and was found to be safe,
with the ratio of experimental to calculated values having a mean
value of 1.59 and a standard deviation of 0.32.

Future Research

Future research is desirable, expanding on the procedure used here,
to determine the shear behavior and strength of noncomposite mem-
bers and to establish whether noncomposite RCFSTs can develop a
compression strut in the concrete infill under shear deformations.
Future research is also desirable to better quantify the shear strength
of concrete (in the presence and absence of a compression strut) and
the effect of the external axial load so as to further enhance (i.e., re-
duce the conservativeness) the proposed strength equations. Further-
more, although predicted strengths were compared with results from
prior studies, it may be desirable in future research to conduct ex-
tensive parametric studies to assess the limits of applicability of the
proposed model.
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